Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device
نویسندگان
چکیده
UNLABELLED Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate ( PEDOT PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).
منابع مشابه
Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes.
Herein, we demonstrate that highly sensitive conductometric gas nanosensors for H(2)S can be synthesized by electrodepositing gold nanoparticles on single-walled carbon nanotube (SWNT) networks. Adjusting the electrodeposition conditions allowed for tuning of the size and number of gold nanoparticles deposited. The best H(2)S sensing performance was obtained with discrete gold nanodeposits rath...
متن کاملAdvances in NO2 sensing with individual single-walled carbon nanotube transistors
The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summariz...
متن کاملDNA-CNT nanowire networks for DNA detection.
The ability to detect biological analytes in a rapid, sensitive, operationally simple, and cost-effective manner will impact human health and safety. Hybrid biocatalyzed-carbon nanotube (CNT) nanowire-based detection methods offer a highly sensitive and specific platform for the fabrication of simple and effective conductometric devices. Here, we report a conductivity-based DNA detection method...
متن کاملHighly Sensitive Biosensors Based on High-Performance Carbon Nanotube Field-Effect Transistors
Electronic detection of biomolecules has been attracting much interest in the fi elds of clinical diagnosis, pharmacy and biotechnology. In particular, developing highly sensitive, label-free, cost-effective, simple and disposable sensors is strongly required for home medical care. Carbon nanotube fi eld-effect transistors (CNTFETs) with singlewall carbon nanotube (SWNT) conducting channels are...
متن کاملNanotube molecular wires as chemical sensors
Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO(2) or NH(3), the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than ...
متن کامل